MidTerm Exam Mathematical Physics, Prof. G. Palasantzas

- Total number of points 100
- 10 points for coming to the exam !
- Justify briefly your answers for all problems

Problem 1 (20 points) Are the infinite series bellow convergent or divergent?

$$
\begin{aligned}
& \text { (a: } 10 \text { points) } \sum_{n=1}^{\infty} n \sin (1 / n) \\
& \text { (b: } 10 \text { points) } \sum_{n=1}^{\infty} \sin (1 / n)
\end{aligned}
$$

Problem 2 (20 points)

Find the interval of convergence for the series $\sum_{n=1}^{+\infty} \mathbf{n}!(2 x-1)^{n}$

Problem 3 (25 points)

Consider a ball that drops from an initial height $h(>0)$, and that every time it bounces on the ground will lose 40% of its energy. If the gravitational constant is g (and ignore any friction losses due to the environment), then calculate the total time until the ball stops on the ground (consider infinite number of bounces until it stops !).

Problem 4 (25 points)

Suppose a mass m is attached to a spring with spring constant k , and let $k=m \omega^{2}$. If an external force $F(t)=F_{o} \cos (\omega t)$ is applied, then we have:

$$
\text { Equation of motion: } \rightarrow \quad m \frac{d^{2} x}{d t^{2}}+c \frac{d x}{d t}+k x=F(t)
$$

If we assume $c^{2}-4 m k<0$, then show that the motion is described by:
$x(t)=e^{-(c / 2 m) t}\left[c_{1} \cos (\widetilde{\omega} t)+c_{2} \sin (\widetilde{\omega} t)\right]+\left(\frac{F_{0}}{c \omega}\right) \sin (\omega t), \quad$ with $\quad \widetilde{\omega}=\omega \sqrt{1-(c / 2 m \omega)^{2}}$

Problem 1
(a) $\lim _{h \rightarrow \infty} n \sin \left(\frac{1}{n}\right)=\lim _{h \rightarrow \infty} \frac{\sin \left(\frac{1}{n}\right)}{1 / n}$

$$
=\lim _{n \rightarrow \infty} \frac{\frac{-1}{n^{2}} \cos (1 / n)}{-\frac{1}{n^{2}}}=\lim _{n \rightarrow \infty} \cos \left(\frac{1}{n}\right)=1
$$

Because $\lim _{n \rightarrow \infty} n \sin \left(\frac{1}{n}\right) \not 0$ the
series diverges
(b) From (a) we have

$$
\lim _{n \rightarrow \infty} \frac{\sin \left(\frac{1}{n}\right)}{\frac{1}{n}}=1>0
$$

Because the series) $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges (Harmonic series)
then frow the limit compasion test we
have that also the series
$\sum_{n=1}^{\infty} \sin \left(\frac{1}{n}\right)$ diverges!

Problem 2

If $a_{n}=n!(2 x-1)^{n}$, then $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(n+1)!(2 x-1)^{n+1}}{n!(2 x-1)^{n}}\right|=\lim _{n \rightarrow \infty}(n+1)|2 x-1| \rightarrow \infty$ as $n \rightarrow \infty$ for all $x \neq \frac{1}{2}$. (a) Convergent for $\mathrm{x}=1 / 2$
(b) Divergent for $x \neq 1 / 2$

Problem 3
Se+ $D=1-C$
Se+ $D=1-h=t_{0}=\sqrt{\frac{2 h}{g}} \quad$ frow height \quad ($c=0.4$ in our case)
Since we now that $h=\frac{1}{2} g t^{2}$
First bounce total time $=2 \sqrt{\frac{9 h D}{g}}$
Dynamic energy travis forms to hinaric and vice versa..
Second bounce tonal time $=2 \sqrt{\frac{2 b D^{2}}{2}}$
Third bounce total time $=2 \sqrt{\frac{2 h D^{3}}{g}}$
Nun bounce total tine $=2 \sqrt{\frac{q h D^{n}}{2}}$
Total trove c time aten infinite bounce)

$$
\begin{aligned}
& T=t_{0}+\sum_{n=1}^{\infty} q \sqrt{\frac{2 h D^{n}}{g}}= \\
& T=\sum_{n=0}^{\infty}\left(2 \sqrt{\frac{2 h}{g}}\right)(\sqrt{D})^{n}-\sqrt{\frac{2 n}{g}}=p \\
& T=2 \sqrt{\frac{2 h}{g}} \sum_{n=0}^{\infty}(\sqrt{D})^{n}-\sqrt{\frac{2 h}{g}}=p \\
& \left.T=\frac{2 \sqrt{\frac{2 h}{g}} \frac{1}{1-\sqrt{D}}}{T}=\sqrt{\frac{2 h}{g}}=1\right) \quad(0<c<1)
\end{aligned}
$$

Problem 4
For the solution of the homogenous

- CASE III $c^{2}-4 m k<0$ (underdamping)

Here the roots are complex:

$$
\left.\begin{array}{l}
r_{1} \\
r_{2}
\end{array}\right\}=-\frac{c}{2 m} \pm \omega i
$$

The solution of the homogenus
 equation

$$
m \frac{d^{2} x}{d t^{2}}+c \frac{d x}{d t}+h x=0
$$

has the form (assuming $c^{2}-4 m k<0$)

$$
\begin{gathered}
x_{\text {bow }}(t)=c_{1} e^{-t / t_{0}} \cos \omega^{\prime} t+c_{2} e^{-t / t_{0}} \sin \omega^{\prime} t \\
t_{0}=-\frac{2 m}{c} \text { and } \omega^{\prime}=\sqrt{\frac{k}{m}-\left(\frac{c}{2 m}\right)^{2}} \text { or } \\
\omega^{\prime}=\omega \sqrt{1-\left(\frac{c}{2 m \omega}\right)^{2}}
\end{gathered}
$$

$$
\begin{aligned}
& m \frac{d^{2} x}{d+2}+C \frac{d x}{d t}+H x=F_{0} \cos \omega_{0} t(1) \\
& X_{p}(t)=A\left(\omega_{0}\right) \cos \left(\omega_{c} t\right)+B\left(\omega_{c}\right) \sin \left(\omega_{0} t\right) \\
& S u b \operatorname{sit} t+c \text { in }(1)=p \\
& m\left(-A \omega_{0}^{2} \cos \omega_{0} t-B \omega_{c}^{2} \sin \omega_{0} t\right)+\left(-A C \omega_{0} \sin \omega_{c} t+\right. \\
& \left.+B C \omega_{0} \cos \omega_{c} t\right)+h\left(A \cos \omega_{0} t+B \sin \omega_{c} t\right)= \\
& F_{0} \cos \omega_{0} t=D \\
& {\left[\left(k-m \omega_{0}^{2}\right) A+C B \omega_{0}\right] \cos \omega_{0} t+} \\
& {\left[\left(h-m \omega_{0}^{2}\right) B-C A \omega_{0}\right] \sin \omega_{0} t=F_{0} \cos \omega_{0} t(2)} \\
& \left(K-\omega_{0} \omega_{0}^{2}\right) A+C B \omega_{0}=F_{0} \\
& \left(H-m \omega_{0}^{2}\right) B-C A \omega_{0}=O
\end{aligned}
$$

since $\omega=\omega_{0}$ (and as a result $k-m \omega^{2}=0$) we obtain after substation since $\omega=\omega_{0}$ (and as a result $k-m \omega^{2}=0$) we obtain after substation $\Rightarrow x_{p}(t)=\left(\frac{F_{0}}{c \omega}\right) \sin (\omega t)$
into the equation of motion $: c \omega \mathrm{~B}=\mathrm{F}_{0}$ and $\mathrm{A}=0 \quad$

Full solution: $\left\{\begin{array}{l}x(t)=\mathrm{e}^{-(c / 2 \mathrm{~m}) \mathrm{t}}\left[\mathrm{c}_{1} \cos (\widetilde{\omega} t)+\mathrm{c}_{2} \sin (\widetilde{\omega} t)\right]+\left(\frac{F_{0}}{c \omega}\right) \sin (\omega t) \\ \widetilde{\omega}=\omega \sqrt{1-(c / 2 m \omega)^{2}}\end{array}\right.$

